A mechanism for tamoxifen-mediated inhibition of acidification.
نویسندگان
چکیده
Tamoxifen has been reported to inhibit acidification of cytoplasmic organelles in mammalian cells. Here, the mechanism of this inhibition is investigated using in vitro assays on isolated organelles and liposomes. Tamoxifen inhibited ATP-dependent acidification in organelles from a variety of sources, including isolated microsomes from mammalian cells, vacuoles from Saccharomyces cerevisiae, and inverted membrane vesicles from Escherichia coli. Tamoxifen increased the ATPase activity of the vacuolar proton ATPase but decreased the membrane potential (Vm) generated by this proton pump, suggesting that tamoxifen may act by increasing proton permeability. In liposomes, tamoxifen increased the rate of pH dissipation. Studies comparing the effect of tamoxifen on pH gradients using different salt conditions and with other known ionophores suggest that tamoxifen affects transmembrane pH through two independent mechanisms. First, as a lipophilic weak base, it partitions into acidic vesicles, resulting in rapid neutralization. Second, it mediates coupled, electroneutral transport of proton or hydroxide with chloride. An understanding of the biochemical mechanism(s) for the effects of tamoxifen that are independent of the estrogen receptor could contribute to predicting side effects of tamoxifen and in designing screens to select for estrogen-receptor antagonists without these side effects.
منابع مشابه
Tamoxifen inhibits acidification in cells independent of the estrogen receptor.
Tamoxifen has been reported to have numerous physiological effects that are independent of the estrogen receptor, including sensitization of resistant tumor cells to many chemotherapeutic agents. Drug-resistant cells sequester weak base chemotherapeutics in acidic organelles away from their sites of action in the cytosol and nucleus. This work reports that tamoxifen causes redistribution of wea...
متن کاملAntiproliferative effects of flavonoid fractions from Calendula officinalis flowers in parent and tamoxifen resistant T47D human breast cancer cells
The risk of human breast cancer is concerned to cumulative exposure of the breast cells to endogenous estrogens. Strategies aiming at reducing the production of estrogens may be useful for the prevention of estrogens-related breast cancer. Several natural products with plant origin have the potential value as chemo-preventive or therapeutic agents in cancer. Flavonoids, the natural polyphenol c...
متن کاملAntiproliferative effects of flavonoid fractions from Calendula officinalis flowers in parent and tamoxifen resistant T47D human breast cancer cells
The risk of human breast cancer is concerned to cumulative exposure of the breast cells to endogenous estrogens. Strategies aiming at reducing the production of estrogens may be useful for the prevention of estrogens-related breast cancer. Several natural products with plant origin have the potential value as chemo-preventive or therapeutic agents in cancer. Flavonoids, the natural polyphenol c...
متن کاملDuodenal acidification stimulates gastric H2S release through upregulating mRNA expression of cystathionine gamma lyase
Introduction: It has been reported the alkaline response of pancreas to duodenal acidification is partly mediated through duodenal release of H2S, but till now the effect of duodenal acidification on gastric H2S release has not been investigated. Therefore, the present study designed to evaluate the effects of duodenal acidification on gastric H2S release and level of mRNA expression of cys...
متن کاملCell Kinetic Study of Tamoxifen Treated MCF-7 and MDA-MB 468 Breast Cancer Cell Lines
Apoptosis could be a major mechanism of antitumor effect of tamoxifen. Therefore this study is designed to characterize the kinetic behavior of tamoxifen-induced apoptosis in the estrogen receptor positive (ER+) and negative (ER-) cell lines, MCF-7 and MDA-MB-468. Frequency of cell death was examined by trypan blue and acridine orange staining. Annexin V-Fluorescein/PI was used in flow cytometr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 274 26 شماره
صفحات -
تاریخ انتشار 1999